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Summary 

 

Verification and validation in engineering simulation is an emerging subject within which the 

primary definitions and taxonomies remain topics of debate. 

 

Authors have proposed various definitions, component taxonomies and frameworks for the 

simulation process and associated verification and validation tests, e.g. [1]. However, these 

schemes have invariably been derived from empirical or ad-hoc bases. 

 

This paper presents a unique analytical approach for deducing the framework and taxonomy of 

simulation process components, error sources and associated verification and validation processes 

from a logical base in the scientific theory of truth. 

 

This paper will show that casting a simulation model in syllogistic form renders it amenable to 

error testing by the well-established scientific truth theories of coherence and correspondence [2]. 

A logically structured simulation framework and taxonomy of components and error sources 

naturally emerges from this process. 

 

This approach both clarifies the simulation verification and validation processes by revealing the 

logical structure of their underlying simulation components and error sources, and legitimises 

them as forms of coherence and correspondence truth tests. 

 

 

Introduction 

 

The process of deriving a framework and component taxonomy for the engineering simulation 

process begins by casting the simulation model in syllogistic form. The truth tests of coherence and 

correspondence are then applied to this syllogism. Internal relations within the model are tested by 

the coherence theory, and external relations (real-world) are tested by the correspondence theory. 

 

Applying this approach, a logical framework of simulation components and error source categories 

naturally emerges, where the principal taxonomic components can be identified as the idealised 

model and the computational model. 

 

Moreover, applying the coherence test to the computational model is recognised as the 

‘verification’ process, and applying the correspondence test between the idealised model and a 

corroborative system (e.g. experimental measurements) is recognised as the ‘validation’ process. 
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The unique advantage of the approach taken in this paper is that it is analytical rather than 

empirical, and delivers a logical taxonomic structure of simulation components, error sources and 

associated verification and validation processes from a sound base in logic and the scientific theory 

of truth. 

 

1. Scientific explanation and the syllogism 

 

A syllogistic argument is a formal deductive argument consisting of a major premise, a minor 

premise and a conclusion, which states that: if 𝑝 implies 𝑞, and 𝑞 implies 𝑟, then 𝑝 implies 𝑟: 

 

[𝑝 → 𝑞] ⏟    
𝑚𝑎𝑗𝑜𝑟 
𝑝𝑟𝑒𝑚𝑖𝑠𝑒

∧ [𝑞 → 𝑟] ⏟    
𝑚𝑖𝑛𝑜𝑟 
𝑝𝑟𝑒𝑚𝑖𝑠𝑒

⇒
𝑑𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 [𝑝 → 𝑟]⏟    
𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛

 
(1) 

 

The crucial feature of this syllogistic argument is that if the premises 𝑝 → 𝑞 and 𝑞 → 𝑟 are true and 

the logic relating them is correctly processed, then the conclusion 𝑝 → 𝑟 will necessarily be true. 

Conversely, if one of more of these premises is false, or the logic is incorrectly processed, then the 

conclusion will be false. 

 

It is apparent that the syllogism possesses a predictive capability, however this is merely a 

tautological inevitability which follows from the premises and logic of 𝑝 → 𝑞 and 𝑞 → 𝑟, which 

already contains the conclusion 𝑝 → 𝑟 within its range.  

 

The potential for applying a syllogistic argument to represent a scientific model is suggested by 

Hempel’s model of scientific explanation [4], which states that scientific explanations can be cast in 

the form of a logical argument consisting of a general laws and particular facts. 

 

 

 
 

𝐞𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐚𝐥
𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭𝐬

 : 𝐠𝐞𝐧𝐞𝐫𝐚𝐥
𝐛𝐞𝐡𝐚𝐯𝐢𝐨𝐮𝐫

⇐
𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 𝐩𝐚𝐫𝐭𝐢𝐜𝐮𝐥𝐚𝐫
𝐝𝐚𝐭𝐚

∧  𝐩𝐚𝐫𝐭𝐢𝐜𝐮𝐥𝐚𝐫
𝐛𝐞𝐡𝐚𝐯𝐢𝐨𝐮𝐫

 

⇓
𝑖𝑑𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛

  ⇓
𝑖𝑑𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛

 ⇓
𝑖𝑑𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛

 ⇑
𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑜𝑛

𝐢𝐝𝐞𝐚𝐥𝐢𝐬𝐞𝐝 𝐦𝐨𝐝𝐞𝐥 : [𝑦 = √𝑥] ⏟      
𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 

𝑚𝑜𝑑𝑒𝑙

∧ [√𝑥 = √2]⏟       

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 
𝑑𝑎𝑡𝑎

 ⇒
𝑑𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

[𝑦 = √2]⏟      
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

(2)

 

 

Figure 1 Experimental measurements idealised as a predictive syllogistic model 
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Clearly, the real-world is not naturally organised into general laws (e.g. behaviours) and particular 

facts (e.g. data), but experimental measurements of physical behaviour in response to particular 

loading data for example, enables us to inductively infer empirical laws which describe the general 

behaviour of the system. 

 

For example, based on some experimental measurements of a real-world system, it is inferred that 

the general behaviour of the system (the dots on the graph in Fig.1) can be idealised by the 

mathematical function 𝑓(𝑥) =  𝑦 − √𝑥 (the line on the graph and upper row in Fig.1). 

 

Applying Hempel’s model, this general behaviour together with particular data (e.g. 𝑥 = 2), enables 

us to predict the particular behaviour of the system at 𝑥 = 2 by constructing a syllogistic argument 

with [𝑦 = √𝑥] as the major premise and [√𝑥 = √2] as the minor premise. Processing this syllogism 

yields the logical conclusion that [𝑦 = √2], as shown in Eq. (2) in Fig. 1. 

 

It is noted that in practice we typically use numerical methods to compute our solutions by 

approximating the model using 𝑛 discrete terms. This numerical approximation can be expressed 

within the syllogism as: 

 

[𝑦 = √𝑥] ⏟      
𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
𝑚𝑜𝑑𝑒𝑙

∧ [√𝑥 = 1.41…𝑛]⏟           

𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑎𝑡𝑎

⇒
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 

[𝑦 →
𝑛→∞

√2]⏟      
𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 
(3) 

 

The discrete nomenclature in (3) indicates that the deductive process in (2) has been transformed 

into a computational process whereby a diminution of computational error is now required to 

restore its deductive characteristic in the limit. In this sense, the numerical and mathematical 

models also converge in the limit, i.e. the approximate discrete solution of the numerical model in 

(3) converges towards the analytical solution of the mathematical model in (2) as the number of 

terms 𝑛 in the numerical approximation is increased. 

 

 

2. Scientific theories of truth 

 

“A judgment is said to be true when it conforms to the external reality”, Thomas Aquinas, c.1250. 

 

This syllogistic form of the idealised model renders it amenable to testing by the well-established 

scientific truth theories of coherence and correspondence [2], where coherence theory tests the 

consistency of a statement’s logic, and correspondence theory tests the conformity of a statement’s 

premises and conclusions with real-world facts. The two terms are commonly defined as: 

 

coherence: logical consistency; 

correspondence: conformance to fact. 

 

When we use idealised models to predict the behaviour of a real-world system, we make 

idealisation assumptions that introduce idealisation error. In addition, when we compute the 
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solution using numerical methods, we introduce computation error. These intrinsic sources of 

error are addressed by the scientific truth tests of correspondence and coherence respectively, as 

explained in the following sections. 

 

2.1 Coherence test for computation error 

  

Coherence theory tests the consistency of a statement’s logic. Because the logic of the syllogistic 

argument is sound, the computational model is in principle coherent, but numerical statements 

such as (3) require a diminution of computation error to realise that coherence in the limit (see Fig. 

2). Hence, the coherence testing process addresses computation error, which can arise both in the 

numerical approximation and the calculation.  

 

Once a coherently converged computational model has been achieved through diminution of 

computational error, the solution should then correspond with increasing accuracy to the 

experimental measurements as any remaining idealisation errors are eliminated (discussed in 

Section 2.2 below). Coherence testing is a prerequisite to correspondence testing. 

 

2.2 Correspondence test for idealisation error 

 

Correspondence theory tests the conformity of a statement’s premises and conclusions with real-

world facts. The idealised model, comprising a coherent mathematical model, data and solution, 

should correspond to the general behaviour, particular data and particular behaviour of the 

associated experimental measurements with increasing accuracy as the idealisation errors are 

identified and eliminated. Hence, the correspondence testing process addresses the idealisation 

error arising in the major premises (model error), minor premises (data error) and the ensuing 

conclusions (prediction error), as shown in Fig. 2. 

 

 
 

  

 

 

𝐞𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐚𝐥
𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭𝐬

: 𝐠𝐞𝐧𝐞𝐫𝐚𝐥
𝐛𝐞𝐡𝐚𝐯𝐢𝐨𝐮𝐫

⇐
𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 𝐩𝐚𝐫𝐭𝐢𝐜𝐮𝐥𝐚𝐫
𝐝𝐚𝐭𝐚

∧  𝐩𝐚𝐫𝐭𝐢𝐜𝐮𝐥𝐚𝐫
𝐛𝐞𝐡𝐚𝐯𝐢𝐨𝐮𝐫

 

⇑
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒

  ⇑
𝑚𝑜𝑑𝑒𝑙

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒

 ⇑
𝑑𝑎𝑡𝑎

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒

 ⇑
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒

𝐢𝐝𝐞𝐚𝐥𝐢𝐬𝐞𝐝 𝐦𝐨𝐝𝐞𝐥 : [𝑦 = √𝑥] ⏟      
𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
 𝑚𝑜𝑑𝑒𝑙

∧ [√𝑥 = 1.41…𝑛]⏟           

𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑎𝑡𝑎

 ⇒
𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒

[𝑦 →
𝑛→∞

√2]
⏟      
𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

(4)

 

 

  
  

Figure 2 The conclusion of an idealised model should correspond with increasing accuracy to the experimental 

measurements as the idealisation and computation error is reduced. In this figure, coherence is characterised 

by convergence within rows, and correspondence by convergence within columns. 

 

Coherence
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3. Sources of error 

 

The following example shows how the sources of error in the syllogistic modelling process can be 

identified by applying the two scientific tests for truth, where: 

 

a) correspondence test – identifies idealisation error, consisting of model error and data error (see 

Section 2.2); 

b) coherence test – identifies computation error, consisting of approximation error and calculation 

error (see Section 2.1). 

 

3.1 Idealisation error – identified by the correspondence test 

 

Fig. 3 shows a situation where reality behaves according to [𝑦 = √𝑥], and where the particular 

point of interest is 𝑥 = 2. Writing this model in syllogistic form gives: 

 

[𝑦 = √𝑥] ⏟      
𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 

𝑚𝑜𝑑𝑒𝑙

∧  [√𝑥 = √2] ⏟      
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 

𝑑𝑎𝑡𝑎

⇒
𝑑𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 [𝑦 = √2]⏟      
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 
(5) 

 

which, in words, means that if [𝑦 = √𝑥] and [√𝑥 = √2] then [𝑦 = √2].  

 

However, let us assume that the actual solution function [𝑦 = √𝑥] is unknown, and that the analyst 

only observes the system behaviour in the interval [0.5 < 𝑥 < 1.25]. In this case, the analyst 

believes that an alternative function, [𝑦 = 𝑙𝑜𝑔(𝑥) + 1], describes the unknown solution function 

within this interval, as shown in Fig. 3. 

 
3.1.1 Model error 

 

The first premise of the syllogistic argument (5) represents the mathematical model. It can be seen 

from Fig. 3 that while the model [𝑦 = 𝑙𝑜𝑔(𝑥) + 1] may be considered accurate within the interval 

[0.5 < 𝑥 < 1.25], the solution at the point 𝑥 = 2 may fall outside the accepted range of accuracy.  

 
 

Figure 3 An alternative model [𝑦 = 𝑙𝑜𝑔(𝑥) + 1] is sufficiently accurate within the interval [0.5 < 𝑥 < 1.25] 
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[𝑦 = 𝑙𝑜𝑔(𝑥) + 1] ⏟          
𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 

𝑚𝑜𝑑𝑒𝑙

 ∧  [𝑙𝑜𝑔(𝑥) + 1 = 𝑙𝑜𝑔(2) + 1]⏟                
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 

𝑑𝑎𝑡𝑎

 ⇒
𝑑𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 [𝑦 = 𝑙𝑜𝑔(2) + 1]⏟          
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 
(6) 

 

This type of idealisation error is caused by the use of an invalid mathematical model [𝑦 = 𝑙𝑜𝑔(𝑥) +

1] and is illustrated in the function range plot shown in Fig. 3.1a.  

 

3.1.2 Data error 

 

The second premise in (5) represents the model’s data, and if that is false, say 𝑥 = 9 (rather than 

the correct value, 𝑥 = 2), then the conclusion will again be false as shown in (7). 

 

[𝑦 = √𝑥] ⏟      
𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 

𝑚𝑜𝑑𝑒𝑙

∧ [√𝑥 = √9] ⏟      
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 

𝑑𝑎𝑡𝑎

⇒
𝑑𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 [𝑦 = 3]⏟    
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 
(7) 

 

This type of idealisation error is caused by invalid data and is illustrated in the function range plot 

shown in Fig. 3.1b. 

 

 
 

In summary, the correspondence test addresses idealisation error which can arise in either of the 

two premises – error arising in the major premise is interpreted as model error, and error in the 

minor premise is interpreted as parametric data error. 

 

3.2 Computation error – identified by the coherence test 

 

Mathematical models cannot typically be solved analytically due to their complexity, therefore an 

approximate numerical model of the mathematical model is constructed which can be solved 

computationally. This process however, introduces both numerical approximation error and 

calculation error. 

 

3.2.1 Approximation error 

 

To illustrate approximation error we use a discrete data laden model. In this case, assuming that 

the logic of the argument will be correctly processed, the conclusion in (8) will still only be true 

within accepted bounds of numerical accuracy. 

 

       

 

Figure 3.1 Idealisation error: a) model error; b) data error 
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[𝑦 = √𝑥] ⏟      
𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
𝑚𝑜𝑑𝑒𝑙

∧ [√𝑥 = 1.41…𝑛]⏟           

𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑎𝑡𝑎

⇒
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

[𝑦 →
𝑛→∞

√2]⏟      
𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 
(8) 

 

This type of computation error is caused by approximating the mathematical model as a discrete, 

data laden numerical model, and is illustrated in the function range plot shown in Fig. 3.2a. In this 

case the discrete solution approaches the analytical solution as the number of decimal digits 𝑛 

approaches infinity. 

 

3.2.2 Calculation error 

 

To illustrate calculation error, we assume that the numerical model with its discrete data represent 

the mathematical model and its data with sufficient accuracy. However, in this example the 

conclusion in (9) is false because the arithmetical logic of the argument has been violated.  

 

[𝑦 = √𝑥] ⏟      
𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 

𝑚𝑜𝑑𝑒𝑙

∧ [√𝑥 = √2]⏟       

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 
𝑑𝑎𝑡𝑎

⇒
𝑒𝑟𝑟𝑜𝑛𝑒𝑜𝑢𝑠
𝑑𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 [𝑦 = 5]⏟    
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 
(9) 

 

This type of computation error is caused by a violation of logic processing, and is illustrated in the 

function range plot shown in Fig. 3.2b. In practice computation error can arise from incorrect 

arithmetic, software bugs, iteration, round-off, etc. 

 

 
 

In summary, the coherence test addresses computation error which can arise either in the 

numerical approximation of the mathematical model and its data (approximation error), or in the 

processing of the logic (calculation error). 

 

 

4. Concepts of verification and validation in engineering simulation 

 

Up to this point, we have discussed syllogistic models and their relations to the scientific truth tests 

of coherence and correspondence. We will now apply these concepts to engineering simulation 

models and their associated verification and validation tests, and show that these tests are 

essentially the same as the scientific truth tests.  

 

    
 

Figure 3.2 Computation error: a) approximation error; b) calculation error 

 

 

 

x

5

2

     y=f(x)
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Widely accepted definitions of the verification and validation processes in engineering simulation 

are [1]: 

 

verification: the process of determining that a computational model accurately represents the 

underlying mathematical model and its solution. 

validation: the process of determining the degree to which a model is an accurate representation of 

the real-world from the perspective of the intended uses of the model. 

 

As discussed in Section 2.1 and shown in Fig. 2, the coherence testing process is used to evaluate 

the computation error arising in both the approximation and calculation processes. As computation 

error is reduced, the discrete solution converges towards the analytical solution of the underlying 

mathematical model. Thus, according to the definition of verification given above, the verification 

test shown in Fig. 4 is essentially the coherence test shown in Fig. 2. 

 

As discussed in Section 2.2 and shown in Fig. 2, the correspondence testing process is used to 

evaluate the idealisation error arising in the model error (major premises), parametric data error 

(minor premises) and predicted behaviour (conclusion). As the idealisation error is reduced, the 

idealised model should converge towards the real-world system that it describes (see also 

discussion in Section 7). Thus, according to the definition of validation given above, the validation 

test shown in Fig. 4 is essentially the correspondence test shown in Fig. 2. 

 

 
 

 

5. Engineering simulation example 

 

5.1 Simulation model 

 

The following is an example of an application of the syllogism to a simple engineering simulation 

model of a single degree of freedom linear spring system (11) illustrated in Fig. 5. 

 

 

 

𝐞𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐚𝐥
𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭𝐬

: 𝐠𝐞𝐧𝐞𝐫𝐚𝐥
𝐛𝐞𝐡𝐚𝐯𝐢𝐨𝐮𝐫

 ⇐
𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝐩𝐚𝐫𝐭𝐢𝐜𝐮𝐥𝐚𝐫
𝐝𝐚𝐭𝐚

∧ 𝐩𝐚𝐫𝐭𝐢𝐜𝐮𝐥𝐚𝐫
𝐛𝐞𝐡𝐚𝐯𝐢𝐨𝐮𝐫

 

⇑

𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

 ∶ ⇑
𝑚𝑜𝑑𝑒𝑙

𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

 ⇑
𝑑𝑎𝑡𝑎

𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

 ⇑
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

𝐢𝐝𝐞𝐚𝐥𝐢𝐬𝐞𝐝 𝐦𝐨𝐝𝐞𝐥 : [𝑦 = √𝑥] ⏟      
𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
𝑚𝑜𝑑𝑒𝑙

∧ [√𝑥 = 1.41…𝑛]⏟           

𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑎𝑡𝑎

 ⟹

𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

[𝑦 →
𝑛→∞

√2]
⏟      
𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

(10)

 

 

  
 

Figure 4 The solution of the idealised model should correspond with increasing accuracy to that of the 

experimental measurements as the idealisation and computation error is reduced. In this figure, verification is 

characterised by convergence within rows, and validation by convergence within columns. 

Coherence
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This simulation model predicts the end displacement 𝑢, of a linear spring 𝐾, subject to an applied 

load 𝐹.  

𝐾𝑢 − 𝐹 = 0 (11) 

 

We write 𝐹/𝐾 to represent a combined stiffness and load parameter, 𝑓/𝑘 to represent the value of 

that parameter incorporating specific data (i.e. spring stiffness value 𝑘, and applied force value 𝑓), 

and 𝑢 = 𝑓/𝑘 to represent the solution of this data laden model. It can be seen from Fig. 5 that the 

idealised model is comprised of three basic components: 

 

 

 

 

 

 

 

 

 

 

 

a) mathematical model 𝐹/𝐾 : represents the relationship between the main system variables; 

b) parametric data 𝑓/𝑘 : represents the data laden model incorporating specific load and data 

values; 

c) solution  𝑢 : represents the displacement response of the model. 

 

The relations between these three components will now be cast in syllogistic form as follows: 

 

[𝑢 = 𝐹/ 𝐾]
𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 

𝑚𝑜𝑑𝑒𝑙

 ∧ [𝐹/ 𝐾 = 𝑓/𝑘]
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐

𝑑𝑎𝑡𝑎

 ⇒
𝑑𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 [𝑢 = 𝑓/ 𝑘]
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 
(12) 

 

which means that if [𝑢 = 𝐹/𝐾] and [𝐹/𝐾 = 𝑓/𝑘] then [𝑢 = 𝑓/𝑘].  

 

The first term in (12) is the major premise [𝑢 = 𝐹/𝐾], which represents the mathematical model. 

The second term is the minor premise [𝐹/𝐾 = 𝑓/𝑘] which represents a data laden instance of that 

model (i.e. with particular values of material coefficients and loading included). Assuming that both 

premises [𝑢 = 𝐹/𝐾] and [𝐹/𝐾 = 𝑓/𝑘] are true, logic necessarily entails the true conclusion 

[𝑢 = 𝑓/𝑘]. 

 

We employ approximation methods such as the finite element method to solve equations such as 
[𝑢 = 𝐹/𝐾], by establishing a set of approximate discrete equations [𝐹/ 𝐾 = 𝑓ℎ/𝑘ℎ], where the 

approximation process simultaneously discretises both the model and the parametric data. 

 

The numerical model converges to the mathematical model in the limit as the discretisation 

parameter ℎ approaches zero, i.e. [𝑓ℎ/ 𝑘ℎ] →
ℎ→0

[𝑓/𝑘], and the approximate solution converges 

towards its analytical counterpart 𝑢 as ℎ → 0 as shown in Fig. 6 

 

       ∧      ⟹      

 

         mathematical model 𝐹/𝐾 ∧ parametric data 𝑓/𝑘  ⟹  solution 𝑢 

 

Figure 5 Basic components of an idealised model of a linear spring system, 𝐾𝑢 = 𝐹 

F

K

u

f k u
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5.2 Simulation verification 

 

In engineering simulation, the error sources to be verified arise within the computational 

modelling process as [3]: 

 

a) approximation, consisting of:  

discretisation (e.g. spatial, temporal),  

truncation (e.g. eigenseries); 

b) calculation, consisting of:  

arithmetical (e.g. mistakes, software bugs),  

iterative (e.g. divergence, round-off). 

 

The verification process evaluates the differences between the computed and analytical solutions 

due to approximation error and calculation error, and is characterised by ‘coherence’. 

 

5.3 Simulation validation 

 

In engineering simulation, the error sources to be validated arise within the idealised modelling 

process as [3]: 

 

a) mathematical model, consisting of:  

governing equations (e.g. element or solution type),  

domain space (e.g. geometric extent), 

boundary conditions (e.g. fixed/free),  

constitutive relations (e.g. material model); 

b) data, consisting of: 

loads (e.g. magnitude, direction, distribution),  

coefficients (e.g. material values). 

 

 

 

𝐞𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐚𝐥
𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭𝐬

: 𝐠𝐞𝐧𝐞𝐫𝐚𝐥
𝐛𝐞𝐡𝐚𝐯𝐢𝐨𝐮𝐫

⇐
𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 𝐩𝐚𝐫𝐭𝐢𝐜𝐮𝐥𝐚𝐫
𝐝𝐚𝐭𝐚

∧  𝐩𝐚𝐫𝐭𝐢𝐜𝐮𝐥𝐚𝐫
𝐛𝐞𝐡𝐚𝐯𝐢𝐨𝐮𝐫

 

⇑
𝑖𝑑𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

 : ⇑
𝑚𝑜𝑑𝑒𝑙

𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

 ⇑
𝑑𝑎𝑡𝑎

𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

 ⇑
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

𝐢𝐝𝐞𝐚𝐥𝐢𝐬𝐞𝐝 𝐦𝐨𝐝𝐞𝐥 : [𝑢 = 𝐹/ 𝐾] ⏟      
𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
𝑚𝑜𝑑𝑒𝑙

∧ [𝐹/ 𝐾 = 𝑓ℎ/𝑘ℎ]⏟           
𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑎𝑡𝑎

 ⟹
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛
𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

[𝑢 →
ℎ→0

𝑓/ 𝑘]
⏟        

𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

(13)

 

 

  
 

Figure 6 The solution of the idealised model should correspond with increasing accuracy to that of the 

corroborative system as the idealisation and computation error is reduced. In this figure, verification is 

characterised by convergence within rows, and validation by convergence within columns. 

 

Coherence
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The validation process evaluates the differences between the idealised model and the 

corroborative system (e.g. experimental results) due to mathematical model error and 

parametric data error, and is characterised by ‘correspondence’. 

 

 

6. A logical framework for simulation, verification and validation 

 

This paper has shown that by casting a simulation model in syllogistic form, a logical taxonomy of 

simulation components and error sources naturally emerges (as summarised in Sections 5.2 and 

5.3). It has also shown in Section 4 that the associated verification and validation processes are in 

fact forms of the scientific truth tests of coherence and correspondence; verification being 

characterised by coherence of the computational model, and validation being characterised by 

correspondence of the idealised model to experimental measurements. In summary, the two main 

error source categories emerging from this process are:  

 

a) idealisation error; 

consists of model and data error, 

treated by the validation process (correspondence test), 

convergence sought between the idealised model and the corroborative system, 

validation challenges the behavioural accuracy of the idealisation, 

 

b) computation error; 

consists of approximation and calculation error, 

treated by the verification process (coherence test), 

convergence sought between the computational model and the idealised model, 

verification challenges the numerical accuracy of the computation, 

note: verification is a prerequisite for validation (see also Section 7). 

 

The foregoing can now be consolidated and structured into a logical process of simulation model 

components and verification and validation activities (see Fig. 7), where the process sequence is: 

 

1. A model of the real-world system is idealised and stated in mathematical terms. 

2. This idealised model is numerically approximated to produce a computational model. 

3. The discrete solution of this computational model is calculated.  

4. The discrete solution is expanded to produce a continuous solution for comparison (verification 

process) against the analytical solution of the idealised model (see also comment b) in Section 7) 

5. When acceptable solution convergence between the idealised and computational models has 

been achieved, the solution is interpreted in terms of the behaviour of the real-world system.  

6. The predicted behaviour of the idealised model is compared (validation process) against the 

observed real-world behaviour (see also comments d) and e) in Section 7). 

7. When acceptable convergence has been achieved between the behaviours of the idealised model 

and real-world system, the simulation can be deemed valid within that particular scope of testing. 

 

The foregoing is summarised schematically as an overall process flow diagram in Fig. 7 [3]. 
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Figure 7 Overall simulation process flow diagram showing verification and validation activities 

 

engineered 
object 

experimental data

idealised model
mathematical 

model and data

approximation

idealisation

computational 
model

numerical model 
and discrete data

calculation

discrete 
solution

calculation 
verification

expansion

idealisation 
validation

behavioural 
prediction

approximation 
verification

computation 
verification

continuous 
solution

interpretation

simulation process

V&V process



                                    NAFEMS World Congress 2015, San Diego  13 

7. Discussion 

 

It has been shown that the verification process tests the coherence of the computational model, and 

that the validation process tests the degree of correspondence between the idealised model and a 

corroborative system (e.g. experimental results). 

 

Fig. 8 shows the structure of the error sources underlying the verification test of the computational 

model and the validation test of the idealised model.  

 

 
 

Figure 8 Error source framework showing components of, and relations between, verification 

(coherence of the computational model) and validation (correspondence between the idealised model 

and the corroborative system)  

 

Comments 

 

a) It is important to appreciate that convergence between the analytical solution and the computed 

solution is characteristically different to convergence between a real-world problem and an 

idealised model of it. This is because convergence between the computational and analytical 

solutions is governed by a predictable algorithmic process, whereas convergence between a real-

world system and any model of it (see Fig. 8) is an evolutionary process. This is because no logical 

relation exists between the real-world and any description of it, and any convergence between the 

two entities evolves by an empirical, evolutionary process of random error correction. 

 

b) As shown in Fig. 8, the computed solution constitutes an input to the model validation process 

since an analytical solution is not normally available. Therefore, the solution should not contain 

significant computation error, otherwise it will not be clear (for the purposes of error treatment) 

whether the error has arisen within the idealisation or computation processes, since the error in its 

calculation

arithmetic

verification validation

evolutionary

approximation

incompleteness

model

idealisation

data

idealisation

algorithmic evolutionary evolutionary

solution

computation

evolutionary

error test:

error source:
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totality will be a complex combination from both sources. Therefore, successful model verification 

is a prerequisite for successful model validation.  

 

c) While convergence of a sequence of approximate solutions (e.g. due to mesh enrichment) is 

algorithmic in nature and potentially predictable, convergence of calculation error (e.g. random 

bug fixing) is evolutionary and unpredictable (see Fig. 8). In practice however, assuming 

experienced analysts and mature software, the computational solution error is more likely to be 

dominated by numerical approximation characterised by algorithmic convergence. However, 

quantitatively assessing the degree of approximation error can be problematic since a variety of 

approximation error estimation methods may be applicable, each having a distinct theoretical basis 

and quantifying the error in a unique way. 

 

d) Since the corroborative system needs to capture the relevant physics of the problem, an 

experimental corroborative system is preferred over experiential, analytical or simulation 

alternatives. However, even experimental models may fail to capture all the relevant physics, for 

example, due to the presence of unanticipated, and therefore unmeasured, loading and failure 

modes. Experimental procedure errors (e.g. metrological mistakes) and scientific reduction errors 

tend to occur randomly but diminish as the experimentation cycle matures. 

 

e) Inputs to the model validation process will include a verified computational solution (ideally 

accompanied by numerical error estimates) together with the idealisation assumptions. In practice, 

the validation will typically involve a comparison of the idealised model’s predicted values with 

those from an independent source such as experimentation and/or observation. However, the 

mathematical model and data assumptions inherent in the idealised model also need to be 

reviewed in order to assess their validity, independently of the accuracy of the computed solution.  

 

f) Where model validation is unsuccessful, the sources of error in the model will need to be 

identified and treated, the model improved, and its predictions revised. This improvement cycle 

needs to be continued until an acceptable degree of validation is achieved, within accepted bounds 

of accuracy, risk and cost. 

 

g) Software verification is an independent prerequisite for the simulation process, whereby 

software must be shown to work correctly before application, particularly with respect to the 

simulation type to which it will be applied [5]. However, some software bugs will inevitably find 

their way into the simulation process despite best efforts at prerequisite software verification, 

ultimately surfacing as calculation error. On identification of a software bug, the practical response 

would be to halt the simulation, fix the bug (or find a work-around), run the code verification 

process again, and then repeat the simulation. It is noted that the software verification process is 

identical to the computation verification process shown in Fig. 7, which begins with the idealised 

model (having an analytical solution) and ends with the continuous solution (for comparison with 

the analytical solution). 

 

h) In this paper, only one major premise and one minor premise were used in the conceptual model 

template (from which an idealised model is created), but additional minor premises can also be 

added to limit the domain and range of the model (model constraints), e.g. 𝑎 < 𝑥 ≤ 𝑏 or 𝑦 < 𝑑. 
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